-
Optimal Transport for Multi-source Domain Adaptation under Target Shift
Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia.
-
Multi-View Data Generation Without View Supervision
- Multi-view Metric Learning in Vector-valued Kernel
Spaces. Riikka Huusari ; Hachem Kadri ; Cécile Capponi.
AISTATS, (Lanzarote, Spain), 2018 (paper: HuusariAistats2018, code: MultiViewMetricLearning)
-
General Framework for Multi-View Metric Learning
Riikka Huusari, Hachem Kadri, Cécile Capponi.
-
Learning from imbalanced datasets with cross-view cooperation-based ensemble methods.
Cécile Capponi and Sokol Koço
-
Fast and Provably Effective Multi-view Classification with Landmark-based SVM.
Valentina Zantedeschi, Rémi Emonet, Marc Sebban
-
Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization
Anil Goyal ; Emilie Morvant ; Massih-Reza Amini
-
Apprentissage d’un vote de majorité hiérarchique pour l’apprentissage multivues
Anil Goyal ; Emilie Morvant ; Massih-Reza Amini
-
Multi-View Data Generation Without View Supervision
Mickael Chen, Ludovic Denoyer and Thierry Artières
-
Multi-view Generative Adversarial Networks
- Risk upper bounds for general ensemble methods with an application to multiclass classification. François Laviolette, Emilie Morvant, Liva Ralaivola, Jean-Francis Roy. Neurocomputing, 219:15-25, 2017,
-
PAC-Bayesian Analysis for a two-step Hierarchical Mutliview Learning Approach. Anil Goyal ; Emilie Morvant ; Pascal Germain ; Massih-Reza Amini. Proc of European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2017, Skopje, Macedonia
- Theoretical Analysis of Domain Adaptation with Optimal Transport. Ievgen Redko, Amaury Habrard, Marc Sebban. Proc of European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML-PKDD), 2017. (related Research report in 2016. pdf)
- beta-risk: a New Surrogate Risk for Learning from Weakly Labeled Data. Valentina Zantedeschi, Rémi Emonet, Marc Sebban. Proc. of International Conference on Neural Information Processing Systems (NIPS), 2016. pdf
- Mapping Estimation for Discrete Optimal Transport. Mickaël Perrot; Nicolas Courty; Rémy Flamary; Amaury Habrard. Proc. of International Conference on Neural Information Processing Systems (NIPS), 2016. pdf
- Metric Learning as Convex Combinations of Local Models with Generalization Guarantees. Valentina Zantedeschi, Rémi Emonet, Marc Sebban. Proc of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. pdf
- A New PAC-Bayesian Perspective on Domain Adaptation. Pascal Germain ; Amaury Habrard ; François Laviolette ; Emilie Morvant. Proc. of International Conference on Machine Learning (ICML), 2016, New York, USA. pdf
- Théorèmes PAC-Bayésiens pour l’apprentissage multi-vues. Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza AminiFrench Conference on Machine Learning (CAp 2016), 2016, Marseille, France.
Cross-view Learning: theory, algorithms and benchmarks